
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4632 143

Using Map-Reduce performing Online Query

Aggregation

M Sabir Chauhan
1
, Rekha Jadhav

2

M.E Computer Engineering, G.H.R.I.E.T., Savitribai Phule University, Pune, India
1

Professor, Department of Computer Engineering, G.H.R.I.E.T., Savitribai Phule University, Pune, India
2

Abstract: In online aggregation, a database system processes a user‘s aggregation query in an online fashion. During

the query processing, the system gives the user an estimate of the final query result, with the confidence bounds that

become tighter over time.Map-Reduce programming approach have close relationship with cloud computing. Today,

online aggregation is a very attractive technology. In this I have described how online aggregation can be built into a

Map-Reduce system for large-scale data processing. In this I also describes the detail implementation of OLA models

in Hayracks . In literature survey section we have briefly discussed various online aggregation methodology such as

OATS,COLA , Parallel Online Aggregation with their advantages and limitations. Lastly, I have presented advantages

and limitation of OLA. Online Aggregation is an attractive sampling-based technology to response aggregation queries

by an estimate to the final result, with the confidence interval becoming tighter over time. It has been built into a Map-

Reduce-based cloud system for big data analytics, which allows users to monitor the query progress, and save money

by killing the computation early once sufficient accuracy has been obtained. However, there are several limitations that

restrict the performance of online aggregation generated from the gap between the current mechanism of Map-Reduce

paradigm and the requirements of online aggregation, such as: 1) The low sampling efficiency due to the lack of

consideration of skewed data distribution for online aggregation in Map-Reduce.

2) The large redundant I/O cost of online aggregation caused by the independent job execution mechanism of Map-

Reduce.

Keywords: Cloud, Hadoop ,Map-Reduce, Hayracks , Online Aggregation.

I. INTRODUCTION

When we are running online aggregation (OLA)[1] during

query processing, a database system gives a user a

statistically valid estimate for the final answer to an

aggregate query, along with confidence bounds. The

confidence bound is calculated in the following form:

―with probability p, the actual query answer is within the

range low to high‖. As the computation progresses, the

bounds goes narrow, until the bounds are zero width, that

indicate the complete accuracy. The main benefit of using

OLA is that if an acceptably accurate answer can be

arrived at very quickly (may be, tiny fraction of the time

needed to run the entire query), the query can be aborted,

and in this way it is possible to save computer and human

time.

In this work, Map-Reduce was originally designed as a

batch oriented system.Generally,it is used for interactive

data analysis where a user submits a job to extract

information from a data set, and then waits to view the

results before proceeding with the next step in the data

analysis process. This trend has accelerated with the

development of high-level query languages such as Hive ,

Pig and Sawzall that are executed as Map-

Reducejobs.Traditional Map-Reduce implementations

provide a poor interface for interactive data analysis,

because they do not produce any output until the job has

been executed to completion. In many cases, user need a

―quick and dirty‖ approximation over a correct answer that

takes much longer to compute. In order to get the

intermediate result, online aggregation has been used, but

the batch-oriented nature of traditional Map-Reduce

implementations makes these task difficult to apply .Now

day, Online Aggregation has a good scientific impact, but

its commercial impact has been limited or even non –

existent because of the following two main reasons:

1.During the implemention of OLA within a database

engine we require to do the extensive changes to the

database kernel. OLA requires some sort of statistically

quantifiable randomness within the database engine.

Most of the OLA algorithms that has been used,

require the blocks (or tuples) in a relation be processed

using a ―random‖ ordering. For random ordering we

need to do significant changes to most kernels.

2.Some query finish its execution within a fraction and

returns the result to the user, even if the user is

relatively happy with the results. Ending the query early

might save some CPU cycles or disk bandwidth that

can then be used by others, but the user who killed the

query early may not benefit directly. Furthermore, the

database hardware/software/maintenance costs in a self-

managed system are not elastic, and do not decrease

appreciably if many users decide to stop their queries

early.

II. LITERATURE SURVEY

1. Online Aggregation in the cloud (OLA Cloud)

In OLA Cloud implementation[3] ,I have used Hadoop

Online Prototype (HOP) as a natural candidate for the

underlying query processing engine. HOP is a modified

version of the original Map-Reduce framework, which is

designed to construct a pipeline between Map and

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4632 144

Reduce so that the reduce task could start immediately as

long as any Map output is generated. Such pipeline

property can help to support OLA by returning the early

approximate result of the query, and scaling up such result

with the query progress.In this section,I have described

the data flow of OLA Cloud, which consists of two steps:

A. Content-aware repartition with fair-allocation strategy.

B. OLA query processing with shared sampling.

A. Content-Aware Repartition With Fair-Allocation

Strategy : The first step it is nothing but a pre-processing

of OLA Cloud, which is implemented by using two

functional components:content-aware repartition and fair

allocation.This is motivated by the observation that the

performance of online aggregation is actually determined

by the data distribution rather than data size . Given an

input file has already been loaded into the HDFS (Hadoop

Distributed File System), the task of such pre-processing is

to reorganize the original file in the granularity of blocks

according to the attributes. For the content-aware partition,

author proposed a block placement strategy called fair-

allocation, which replaces the default random strategy, to

guarantee the storage and computation load balancing for

our content-aware repartition method.

Fig.1.Content-Aware Repartition With Fair-Allocation

Strategy.

B. OLA Query Processing With Shared Sampling

This step is implemented by the component called shared

sampling.which provide support to the essential

procedures of OLA such as sample collection, statistic

computation and accuracy estimation.The multiple queries

are decomposed into a series of map tasks initially. And

we can reuse the samples retrieved by one task to evaluate

a number of queries rather than each query retrieves its

own samples if there has potential dependency among

these map tasks. Above figure shows that OLA Cloud

collects a batch of query jobs and analyzes the sharing

opportunities among the queries in the granularity of task

and groups the shared tasks together to form a new

grouped map task, in which the samples collected are

reused for accuracy estimation of each involved query.The

reduce phase estimates the approximate results for the

query jobs once the reducer receives a sufficient map

output (a pipeline model). If the accuracy obtained is

unsatisfactory, the above reduce process is repeated by

taking the latest map output which is aggregated with the

previous approximate results to make a new estimate for

higher accuracy. The final result is returned when desired

accuracy is reached and the users can stop the query early

before its completion.

Fig .2. OLA Query Processing With Shared Sampling.

2. Hadoop Implementation To Support OLA Within A

Single Job & Between Multiple Jobs:

A. Single-Job Online Aggregation:

In HOP[4], the data records produced by map tasks are

sent to reduce tasks shortly after each record is generated.

However, to produce the final output of the job, the reduce

function cannot be invoked until the entire output of every

map task has been produced. Here, it is possible to support

online aggregation by simply applying the reduce function

to the data that a reduce task has received so far.The

output generated of such an intermediate reduce operation

is called snapshot. Users would like to know how accurate

a snapshot is: that is, how closely a snapshot resembles the

final output of the job. Accuracy estimation is a hard

problem even for simple SQL queries and particularly

hard for jobs where the map and reduce functions are

user-defined code.

B. Multi-Job Online Aggregation:

Online aggregation is particularly useful when it is

applied to a long-running analysis task consist of multiple

Map-Reduce jobs.This version of Hadoop allows the

output of a reduce task to be sent directly to map tasks.

This feature can be used to support online aggregation for

a sequence of jobs. Suppose that job1 and job2 are two

Map-Reduce jobs, and consider job2 consumes the output

of job1. When job1‘s reducers compute a snapshot to

perform online aggregation, that snapshot is written to

HDFS, and also it is sent directly to the map tasks of job2

. The map and reduce steps for job2 are then computed as

normal, to produce a snapshot of job2‘s output. This

process can then be continued to support online

aggregation for an arbitrarily long sequence of jobs.

3. COLA: A Cloud-Based System for Online

Aggregation

COLA [7] provides an online aggregation executions

engine with sampling techniques that support incremental

and continuous computing aggregation and minimize the

waiting time before an acceptable estimate is

available.User friendly SQL queries are also supported in

COLA.COLA can convert non OLA jobs into online

version so that user do not have to write any special

purpose code to make estimate.

C. COLA System Architecture And Implementation

In below Fig 5 shows the System architecture of COLA.

In COLA there are four modules: User Interface, Query

Engine, Online Aggregation Executor and Data

Manager.Users can submit queries through SQL or

command-line interface and monitor running estimates via

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4632 145

the User Interface. The Query engine serves as a translator

that transforms SQL queries into Map-Reduce jobs and

converts non-OLA jobs to online mode. The Online

Aggregation Executor fetches uniform-random samples

from the Data Manager continuously, processes the

samples through Map-Reduce jobs in online fashion and

reports the estimates back to the client.

Fig.3. System architecture of COLA.

1. User Interface:

COLA provides interactive and flexible interfaces, users

can issue SQL query request through SQL interface or

submit Map-Reduce program via shell interface.In

addition, the graphical user interface it can also observe

the query progress and online estimates with associated

confidence intervals during the query processing.

2. Query Engine:

The Query Engine is responsible for compiling the SQL

query into directed acyclic graph of Map-Reduce jobs, and

translating the non-OLA jobs to online version. Hence

users can submit batch-oriented Map-Reduce programs

and do not need to have the knowledge of the estimate

computation.

3. Online Aggregation Executor:

The Online Aggregation Executor is the key module of

COLA to perform online query processing algorithm over

Map-Reduce. It is called to process the sample data,and it

produces an approximate answers with their associated

confidence intervals. It also used to refine the answers. In

addition, the module makes predictions about the residual

completion time,and also estimates amount saved so far.

4. Data Manager:

The Data Manager makes use of HDFS to store and

manage data. It mainly stores the metadata such as

mappings between tables and HDFS directories in

Metadata Manager, that can be used to do query

optimization and compilation in SQL2MR Translator.

Advantages of COLA:

COLA provide progressive approximate aggregate

answers for both single table and multiple joined

tables.COLA can produce acceptable approximate answers

within two orders magnitude shorter time compared to

getting the accurate results, which makes it possible to

save huge amount of computing cost from the pay-as-you-

go cost model in the context of cloud computing.

Advantages of OLA :

1. OLA makes the original platform much more flexible

by providing a fast and effective way to obtain

approximate results within the prescribed level of

accuracy rather than the accurate results. This can

significantly improve the analytic performance against

the large volumes of data.

2. OLA reduces the economic cost of users on the

typically pay-as-you-go cloud systems, that is an user

can save money by monitoring the estimated result and

killing the computation early once the user gets

sufficient accuracy .

3. OLA also increases the overall throughput of the cloud

system since the released resources of early terminated

OLA queries can be delivered to the other running OLA

queries immediately, which helps to increase the

parallelism degree and resource utilization.

Limitation of OLA:

1)Sampling efficiency is low due to the lack of

consideration of skewed data distribution for online

aggregation in Map-Reduce.

2) It increases the I/O cost of online aggregation due to

the independent job execution mechanism of Map-

Reduce.

III. IMPLEMENTATION

In this I have describe our implementation of the OLA

model in Hyracks . Hyracks is a new open source project

that supports map and reduce operations, along with

higher level relational operations such as filter (selection),

projection, and join.The Hyracks architecture is similar to

Hadoop—it has a single master node for submitting jobs

(queries) and housing the task scheduler, which executes

tasks on worker nodes running in the cluster.Hyracks tasks

support read and write operations in HDFS , which we

leverage to store the input to the map tasks and the output

of the reduce tasks. Like Hadoop, when a client submits a

Map-Reduce job, Hyracks assigns a single map task to a

given block in the input data, and creates a configurable

number of reduce tasks that are assigned specific groups

using some partitioning function.

In this modified the Hyracks implementation in two ways.

First, created a single queue containing the blocks in the

input data.The order of the blocks in the queue is

uniformly shuffled using the java.util.Collections.shuffle

routine from the Java Standard Library.When Hyracks

schedules a map task, it assigns the current block at the

head of the queue. The map task‘s execution time includes

the time to obtain its assigned block from HDFS, the

execution of the map function on each input record, and

the execution of the combiner on the complete map

function output. In this work we ignore performance issues

involving locality; although we do account for block

locality in our model. In future work, we plan on

investigating locality scheduling techniques reminiscent to

Delay Scheduling. Our second modification involves

running the estimator in the reduce task during the shuffle

phase. In the shuffle phase, the reduce task is continuously

receiving the output of completed map tasks. The output

of a map task includes a data file containing the groups

assigned to the reduce task and a meta-data file containing

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4632 146

timing and locality information.If the map output contains

no groups for a given reduce task then an empty data file

is given along with a complete meta-data file.The meta-

data file contains the block identifier, the time it took to

schedule the block and the block locality relative to the

map task execution: machine-local, rack-local, or distant.

Also included is the map task IP address, start time and

end time.

3.1 System Architecture:

Hadoop is composed of Hadoop Map-Reduce, an

implementation of Map-Reduce designed for large

clusters,and the Hadoop Distributed File System (HDFS),

a file system optimized for batch-oriented workloads such

as Map-Reduce. In most Hadoop jobs, HDFS is used to

store both the input to the map step and the output of the

reduce step. Note that HDFS is not used to store

intermediate results (e.g. the output of the map step): these

are kept on each node‘s local file system.A Hadoop

installation consists of a single master node and many

worker nodes. The master, called the Job-Tracker, is

responsible for accepting jobs from clients,dividing those

jobs into tasks, and assigning those tasks to be executed by

worker nodes.

Data will be collected from online sources, data will be in

the form of numeric and alpha numeric form based on the

type of input dataset selected by us.Once data is collected

we would create a Hadoop Mapping class to map data into

our respective format as needed by us for processing.After

data mapping we would create a Hadoop Reduce class to

reduce the given data into Aggregated form.Algorithms as

mentioned in the paper would be used to Reduce the data

into Aggregated form (check the following

examples) .Once aggregated data is found, we use it for

result evaluation and comparison purposes.

Fig.4. Architecture Online Aggregation of Map-Reduce

Fig. 5. Architecture of the Proposed System.

3.2 Proposed System Algorithm:

In this,I have[1] consider how estimates and confidence

bounds for those estimates can be obtained. As intimated

previously, this is a challenging problem, as we must take

into account processing times as well as observed

aggregate values in order to circumvent the inspection

paradox.

1. Overview:

I will apply a Bayesian approach for estimation [13]; for

brevity,this section will assume that the reader has some

very basic familiarity with Bayesian statistics. The

Bayesian approach has several obvious benefits for this

particular problem. Most significant is the fact that the

inspection paradox ―goes away‖ under the Bayesian

approach if one takes into account the time spent waiting

for each block to be processed as observed data.

In standard Bayesian fashion, I will first describe a

stochastic, parametric process that we imagine was used to

produce the―observed‖ as well as the ―hidden‖ data. The

―observed data‖ will collectively be referred using variable

X. This set includes all of the known aggregate values and

processing times. Our generative process will also produce

a set of unobserved variables collectively referred to as Ө.

Ө includes any data that is unobserved (for example, the

processing time for a block that has not yet finished)—this

data is collectively referred to as Y—as well as any

unknown parameters required by the generative process

(for example, the mean aggregate value per block). In

Bayesian fashion, we will then attempt to infer the

distribution P(Ө |X), which is referred to as a posterior

distribution for Ө. Then, given X as well as P(Ө |X), it is

possible to obtain a posterior distribution over the actual

query result, which can be used to obtain confidence

bounds that are reported to the user.

Note that the discussion in this is directly applicable only

to SUM and COUNT queries, which are both evaluated by

simply summing xi values (in the SUM case, xi will

contain the total aggregate value for the block, and in the

COUNT case, xi will contain the tuple count for the

block). Extensions to other aggregates such as AVG,

VARIANCE and STD DEV are straightforward; in

general they require that we maintain zero, first and

second moments for each block.

2. Generative process:

To obtain the data that I must analyze to produce estimates

and confidence bounds, we imagine that the following

stepsare repeated, once for each of the n blocks in the

system:

 Z Normal (μ, Σ)

2. (X ,Y)  o ro (Z ,)

 ― ‖ should be read as ―is sampled from‖. After this

process has been repeated n times (once for each block)—

our goal is then to infer the posterior distribution for Ө

using X. This process requires some additional

explanation. We begin by describing the vector Zᵢ. If there

are m machines being used to execute a query, we imagine

that associated with the ith block is a vector Zᵢ with 3m + 2

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4632 147

entries, which contains both observed and hidden data. Zᵢ

takes the form:

3. Prior Distributions

To make our model fully Bayesian , I must supply priors

on and . In our implementation, each k ,

InvGamma(1, 1) (where k refers to the kth dimension in

Zᵢ). The inverse Gamma distribution is a standard,

uninformative prior for values that must be non-

negative—it makes sense to have non-negative means for

all of the time values in the Zᵢ vector. It will also usually

make sense to have a non-negative mean for xᵢ; if not, then

another suitable, uninformative prior can be used.Handling

the covariance matrix is a bit trickier. The standard prior

distribution for a covariance matrix is the inverse Wishart

distribution, because it is ―conjugate‖ for the normal. This

means that under certain conditions, upon observing the

output from a normal distribution with an inverse Wishart

prior on the covariance, th posterior on the covariance is

still inverse Wishart. Conjugacy is convenient because it

can make inference much easier. Unfortunately, these

―certain conditions‖ are not met in our application because

I do not always have actual observations from the

normal—we may only know, for example, that the

processing time has a lower bound (if I am in ―case three‖

from the previous subsection).

Thus,I choose to use an application-specific prior that is

easily factorable; that is, where we can easily write the

marginal distribution for each entry in the covariance

matrix. This makes deriving a Gibbs sampler for inference

much easier (see the next subsection).

Specifically, we let InvGamma(1, 1), where

 Then, we assume that the following

process is used to generate the rest of :

Here, GenBeta(−1, 1, 1, 1) refers to a generalized Beta(1,

1) distribution, stretched to cover the range from −1 to 1

(rather than the usual 0 to 1). What this process does is to

essentially sample a correlation ρ for each of the pairs of

variables in Zᵢ, and to then check whether a valid

covariance matrix has been obtained (one that is positive

definite). If it has not, then the whole process is repeated

again.The PDF for can then be written as:

4. Posterior Distribution

In this subsection, we tackle the problem of obtaining a

formula for the desired posterior distribution, P(Ө|X).

Recall that X =Uᵢ{Xᵢ}, and the unobservable data set Ө

contains Y =Uᵢ{Yᵢ},as well as the normal parameters

and .

From elementary probability, we know that:

This means that there are three quantities that we must

derive expressions for: P(X| Ө), P(Ө), and P(X).

We deal with P(X| Ө) first. From the generative process,

we know that P(X| Ө) =ПᵢP(Xᵢ| Ө). We can easily write an

expression for each P(Xᵢ| Ө).

5. Putting It All Together

Since our goal is to produce estimates and confidence

bounds for the actual query result, we are not interested in

the posterior distribution P(Ө |X) for its own sake. Rather,

we will use P(Ө |X) to produce estimates and confidence

bounds for the answer.To describe how this is done, note

that given a possible value for Ө —combined with the

visible data X—we have access to each and every xᵢ value

in the database. Thus, given a particular Ө as well as X it

is very easy to compute the query answer as:

Then by integrating P(Ө |X) over all possible Ө, we obtain

various statistics describing the eventual query result. For

example, the following gives us the expected value of the

query result:

And I can obtain the lower end l for a Max % of

confidence bound on the query result by computing Ʌ and

l so that:

The upper end could be computed in a similar

fashion.Unfortunately, performing this sort of computation

exactly is difficult.The difficulty is often circumvented

using so-called ―Markov Chain Monte Carlo‖ (MCMC)

methods [15] that sample directly from a distribution such

as P(X| Ө). In our case, we apply a particular MCMC

method called a Gibbs sampler to the problem [4].The

samples obtained from a Gibbs sampler are easily used to

compute expected value and confidence bounds.

IV. EXPECTED RESULTS

In the Online Aggregation I will be used three basic

process onto the Input data (Which is as per the base

paper) these process are as a.Generative Process, b.Prior

Distribution & c.Posterior Distribution. After performing

these processes Putting all the process together and

generates the expected Ouputs.

 And finally I am getting the expected aggregated output.

Due to this I will be used in Online fashion of the data

(Output) Aggregation.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 6, June 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4632 148

Fig. 6. File Selection

Fig. 7. Expected Aggregated Output.

V. CONCLUSION & FUTURE WORK

Like the earlier works on Online Aggregation,I focus on

single table query plans involving ―Group By‖

aggregations, which is precisely the workload targeted by

Map-Reduce. The focus of our work here is to develop a

model that accounts for biases that can arise when

estimating aggregates in a cluster environment. This

model allows us to export ―early returns‖of query

aggregates that are statistically robust. Cloud-based data

management systems are emerging as scalable, fault-

tolerant, and efficient solutions that manages large

volumes of data with cost effective infrastructures.It is an

attractive solution to provide a quick sketch of massive

data before a long wait of the final accurate query result.

The main benefit of OLA is that if we get an acceptably

accurate answer within a fraction of time , then we can

abort the query execution thus, saving significant

computer and human time.

Locality scheduling in the context of online aggregation is

a major issue that needs to handle in future. Scheduling

computation near the data is the primary optimization in

today‘s Map-Reduce Systems. Further, we would also like

to consider external constraints on the scheduler. For

example, we may wish to schedule only those tasks from

the highest priority jobs.

ACKNOWLEDGMENT

I would like to thank Miss. Rekha Jadhav for her

valuable guidance and supporting to Implements the

‗Using Map-Reduce performing Online Aggregation‘.

REFERENCES
[1] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online

aggregation for large map-reduce jobs. In VLDB 2011 Conference

Proceedings, pages 1135–1145, August 2011.

[2] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose,
Rares Vernica Hyracks: A Flexible and Extensible Foundation for

Data-Intensive Computing Proc. IEEE 27th International

Conference on Data Engineering (ICDE) Hanover, Germany
(2011), pp. 1151–1162.

[3] Wang YX, Luo JZ, Song AB . Partition-based online aggregation

with shared sampling in the cloud. Journal of computer science and
technology28(6): 989{1011 Nov. 2013. DOI 10.1007/S11390-013-

1393

[4] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and
R. Sears. Mapreduce online. In NSDI Conference, pages 21–21,

2010.

[5] Yuxiang Wang , Junzhou Luo ,Aibo Song ,Fang Dong OATS:
online aggregation with two-level sharing strategy in cloud Distrib

Parallel Databases (2014) 32:467–505 DOI 10.1007/s10619-014-

7141-2.

[6] Qin, C., Rusu, F. Parallel online aggregation in action. In:

Proceedings of the 25th International Conference on Scientific and
Statistical Database Management (SSDBM), pp. 46–49, 2013.

[7] Yantao Gan, Xiaofeng Meng, Yingjie Shi COLA: A Cloud-Based

System for Online Aggregation Data Engineering(ICDE),2013
IEEE 29th International conf, Pages 1368-1371,April-2013.

[8] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation.

In SIGMOD 1997 Conference Proceedings, pages 171–182, May
1997.

[9] P. J. Haas and J. M. Hellerstein. Ripple joins for online aggregation.

In SIGMOD 1999 Conference Proceedings, pages 287–298, June
1999.

[10] G. Luo, C. J. Ellmann, P. J. Haas, and J. F. Naughton. A scalable

hash ripple join algorithm.In SIGMOD 2002 Conference
Proceedings, pages 252–262, June 2002.

BIOGRAPHIES

M Sabir Chauhan received his B.E.

degree in Computer Engineering from

Amravati University, Maharashtra, India,

in 2012.Currently obtaining M.E degree in

Computer from GHRIET College of

engineering, Wagholi,Pune. His research

interests include HADOOP.

Rekha Jadhav received her B.E. & M.E. degree in

Information Technology from Pune University,

Maharashtra, India.

	I. INTRODUCTION
	II. LITERATURE SURVEY
	A. Content-Aware Repartition With Fair-Allocation Strategy : The first step it is nothing but a pre-processing of OLA Cloud, which is implemented by using two functional components:content-aware repartition and fair allocation.This is motivated by the ob�
	B. OLA Query Processing With Shared Sampling
	A. Single-Job Online Aggregation:
	B. Multi-Job Online Aggregation:
	C. COLA System Architecture And Implementation

	III. Implementation
	3.1 System Architecture:
	3.2 Proposed System Algorithm:
	“ ̴ ” should be read as “is sampled from”. After this process has been repeated n times (once for each block)—our goal is then to infer the posterior distribution for Ө using X. This process requires some additional explanation. We begin by descri...

	IV. EXPECTED RESULTS
	V. CONCLUSION & FUTURE WORK
	ACKNOWLEDGMENT
	References

